Carbon Nanostructures for Tagging in Electrochemical Biosensing: A Review

نویسندگان

  • Paloma Yáñez-Sedeño
  • Susana Campuzano
  • José M. Pingarrón
چکیده

Growing demand for developing ultrasensitive electrochemical bioassays has led to the design of numerous signal amplification strategies. In this context, carbon-based nanomaterials have been demonstrated to be excellent tags for greatly amplifying the transduction of recognition events and simplifying the protocols used in electrochemical biosensing. This relevant role is due to the carbon-nanomaterials’ large surface area, excellent biological compatibility and ease functionalization and, in some cases, intrinsic electrochemistry. These carbon-based nanomaterials involve well-known carbon nanotubes (CNTs) and graphene as well as the more recent use of other carbon nanoforms. This paper briefly discusses the advantages of using carbon nanostructures and their hybrid nanocomposites for amplification through tagging in electrochemical biosensing platforms and provides an updated overview of some selected examples making use of labels involving carbon nanomaterials, acting both as carriers for signal elements and as electrochemical tracers, applied to the electrochemical biosensing of relevant (bio)markers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diagnostics Strategies with Electrochemical Affinity Biosensors Using Carbon Nanomaterials as Electrode Modifiers

Early diagnosis is often the key to successful patient treatment and survival. The identification of various disease signaling biomarkers which reliably reflect normal and disease states in humans in biological fluids explain the burgeoning research field in developing new methodologies able to determine the target biomarkers in complex biological samples with the required sensitivity and selec...

متن کامل

Do Carbon Nanotubes contribute to Electrochemical Biosensing?

Carbon nanotubes have been attracting a lot of interest as electron transfer mediators to enhance electrochemical biosensing. The main reason behind this is usually recognized in terms of augmented electrochemical active surface area. The aim of this paper is to review other phenomena that occur at the electrochemical interface. Three distinct features of these phenomena mainly appear in electr...

متن کامل

Development of Carbon Nanostructured Based Electrochemical Sensors for Pharmaceutical Analysis

Pharmaceutical drugs play an important role in human life since they caused a revolution in human health. Notably, their administration to a living organism helps body to stay healthy. Commonly, they are employed to diagnose, prevent, or treat and cure a disease via a biological effect on a human body. Administration of impurity-free and adequate amounts of pharmaceut...

متن کامل

Development of Carbon Nanostructured Based Electrochemical Sensors for Pharmaceutical Analysis

Pharmaceutical drugs play an important role in human life since they caused a revolution in human health. Notably, their administration to a living organism helps body to stay healthy. Commonly, they are employed to diagnose, prevent, or treat and cure a disease via a biological effect on a human body. Administration of impurity-free and adequate amounts of pharmaceut...

متن کامل

Recent progress in Prussian blue films: Methods used to control regular nanostructures for electrochemical biosensing applications.

In the last decade, Prussian blue (PB) has attracted increased scientific interest in various research fields, such as fuel cells, gas separation and pollution treatment. Due to its advanced catalysis, biocompatibility, selectivity and stability, PB has been widely used in biosensor construction. However, the formation of regular PB nanostructures is challenging due to its fast crystallization ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017